DCIS Biology and Treatment

Ian Ellis

Molecular Medical Sciences, University of Nottingham
Departments of Histopathology, Nottingham City Hospital NHS Trust
Which in situ breast epithelial lesions are:

Hyperplastic

Neoplastic

Benign - “adenoma”

Malignant - “carcinoma in situ”
Which in situ breast epithelial lesions are:

Hyperplastic
 Usual Hyperplasia

Neoplastic

“Benign” - adenoma / microfocal neoplasia / low grade
 ? ADH / microfocal low grade DCIS
 ? Lob Neoplasia
 ? Columnar alteration

“Malignant” - carcinoma in situ
 ? “established” DCIS
 ? some forms of LCIS
Neoplastic insitu breast epithelial lesions

Challenges:

Understanding molecular genetic pathogenesis
Identification of clinical relevance
Effective strategies for management
Development of reproducible criteria for routine classification
Risk and Epithelial Prolif.

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florid UEH</td>
<td>1.5 - 2 Minimal risk</td>
</tr>
<tr>
<td>ALH</td>
<td>4x</td>
</tr>
<tr>
<td>ALH + family history</td>
<td>8 - 10x</td>
</tr>
<tr>
<td>ADH</td>
<td>4x</td>
</tr>
<tr>
<td>LCIS</td>
<td>10x</td>
</tr>
<tr>
<td>LCIS + family history</td>
<td>10x</td>
</tr>
<tr>
<td>DCIS low grade</td>
<td>10x</td>
</tr>
</tbody>
</table>

Lobular neoplasia risk most relevant in 5th decade
Slight preponderance of cancer in the ipsilateral breast for LN
Which in situ breast epithelial lesions are:

Hyperplastic = heterogeneous

Neoplastic = homogeneous / clonal

Benign - “adenoma”
Malignant - “carcinoma in situ”
Genetic alterations

LOH Studies

UDH approx 10% (0-30%) usually one locus only

ADH approx 50%
 similar loci to low grade DCIS and similar alterations
 found in subsequent inv ca of same breast

DCIS 50 - 80% numerous sites (similar to inv ca)
“..................it is very questionable whether ADH represents a true histopathological entity”

Marc van de Vijver. Biological variables and prognosis of DCIS. The Breast 2005;14; 509-19
Grade of Invasive Cancers Developing Within DCIS

<table>
<thead>
<tr>
<th>DCIS</th>
<th>I (Low grade</th>
<th>II</th>
<th>III</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low grade</td>
<td>13 (81%)</td>
<td>3</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Intermed g</td>
<td>22 (24%)</td>
<td>63 (70%)</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>High grade</td>
<td>3 (1%)</td>
<td>90 (42%)</td>
<td>119</td>
<td>212</td>
</tr>
</tbody>
</table>

Total | 318 |

DCIS

Relationship to invasive carcinoma

Summary
Morphological and molecular similarities
Clonal process
Analogous to epithelial in situ lesions elsewhere
High frequency of progression to invasive carcinoma if incompletely excised
Risk of invasive cancer after biopsy alone

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>N</th>
<th>All</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis</td>
<td>1938</td>
<td>1938</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>Farrow</td>
<td>1970</td>
<td>1970</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Haagensen</td>
<td>1971</td>
<td>1971</td>
<td>8</td>
<td>73</td>
</tr>
<tr>
<td>Millis</td>
<td>1975</td>
<td>1975</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Rosen</td>
<td>1980</td>
<td>1980</td>
<td>8</td>
<td>53</td>
</tr>
<tr>
<td>Eusebi</td>
<td>1994</td>
<td>1994</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Page</td>
<td>1995</td>
<td>1995</td>
<td>9</td>
<td>32</td>
</tr>
</tbody>
</table>

Mean = 28%
Natural history of low grade DCIS

- 28 patients with low grade identified from 1950-1968
- 30 yrs follow up
- 11 (39%) invasive cancer
- 5 (18%) breast cancer deaths
- 4 of the 5 breast cancer deaths occurred within 15 years

M Sanders D Page et al Cancer 2005
Natural history of low grade DCIS

D Page et al 2002

• Studies around this time where the DCIS was recognised found that the lesion was completely excised in 40% when mastectomy was performed

• If this was the case in this series, 17 would have had residual DCIS
Natural history of low grade DCIS

D Page et al 2002

• Revised invasive risk 61%
• Revised breast cancer death rate 29%
• 24% breast cancer death rate within 15 years
• Probably still a conservative estimate as residual lesions had been debulked
Mastectomy for DCIS - Results

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Recurrence</th>
<th>Follow-up (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farrow et al '70</td>
<td>181</td>
<td>1</td>
<td>5 – 20</td>
</tr>
<tr>
<td>Ashikari et al '77</td>
<td>74</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Sunshine et al '85</td>
<td>68</td>
<td>3</td>
<td>> 10</td>
</tr>
<tr>
<td>Schuh et al '86</td>
<td>52</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>Fisher et al '86</td>
<td>28</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>Kinne et al '89</td>
<td>101</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Arneson et al '89</td>
<td>28</td>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>Silverstein et al '95</td>
<td>167</td>
<td>2</td>
<td>6.5</td>
</tr>
<tr>
<td>Location</td>
<td>N</td>
<td>All</td>
<td>Invasive</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>NSABP</td>
<td>403</td>
<td>4.7</td>
<td>2.4</td>
</tr>
<tr>
<td>EORTC</td>
<td>500</td>
<td>4.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Milan</td>
<td>74</td>
<td>4.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Florence</td>
<td>106</td>
<td>1.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Manchester</td>
<td>127</td>
<td>4.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Edinburgh</td>
<td>67</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Nottingham</td>
<td>97</td>
<td>1.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>233</td>
<td>4.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Mean</td>
<td>3.9</td>
<td></td>
<td>1.7</td>
</tr>
</tbody>
</table>
Recurrence in remote quadrants
- 5% (2/43)

Adesson Fisher Zafrani
DCIS

Definitions

Unicentric
(1 duct system)
- Focal continuous
- Multifocal discontinuous

Multicentric
(>1 duct system)

Holland
DCIS

81 cases - 1 duct system

1 case - multiple ducts systems

Unicentric process

Holland Lancet 335, 519, 1990
DCIS Grade and Recurrence

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Nuclear grade</th>
<th>Necrosis</th>
<th>Architecture</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Comedo</td>
<td>High</td>
<td>+++</td>
<td>Solid</td>
<td>7/31</td>
<td>(23)</td>
</tr>
<tr>
<td>II Crib/pap with necrosis</td>
<td>High</td>
<td>+++</td>
<td>Crib/pap</td>
<td>2/5</td>
<td>(40)</td>
</tr>
<tr>
<td>Sub total</td>
<td></td>
<td></td>
<td></td>
<td>9/36</td>
<td>(25)</td>
</tr>
<tr>
<td>III Cribriform/intermediate</td>
<td>Intermediate</td>
<td>+/-</td>
<td>Crib</td>
<td>1/10</td>
<td>(10)</td>
</tr>
<tr>
<td>IV Micropapillary/non necrotic</td>
<td>Low</td>
<td>0</td>
<td>Micropap/crib</td>
<td>0/33</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Lagios Surg Clin North Am 70, 853, 1990
Van Nuys Prognostic Index

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td><16mm</td>
<td>16 – 40mm</td>
<td>>40mm</td>
</tr>
<tr>
<td>Margin width</td>
<td>>9mm</td>
<td>1 – 9mm</td>
<td><1mm</td>
</tr>
<tr>
<td>Pathology</td>
<td>Not high</td>
<td>Not high</td>
<td>High</td>
</tr>
<tr>
<td>Pathology</td>
<td>No necrosis</td>
<td>+/- Necrosis</td>
<td>Necrosis</td>
</tr>
<tr>
<td>Age</td>
<td>>60yr</td>
<td>40 – 60yr</td>
<td><40yr</td>
</tr>
</tbody>
</table>

Van Nuys Score
- 4 - 6
- 7 - 9
- 10 - 12

10-year act LR free
- 96%
- 73%
- 37%
<table>
<thead>
<tr>
<th>Margin</th>
<th>N</th>
<th>Mean size</th>
<th>High grade</th>
<th>Comedo</th>
<th>LR at 8 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm</td>
<td>93</td>
<td>9mm</td>
<td>46%</td>
<td>23%</td>
<td>2.2%</td>
</tr>
<tr>
<td>1 – 10mm</td>
<td>124</td>
<td>8mm</td>
<td>32%</td>
<td>32%</td>
<td>18.9%</td>
</tr>
<tr>
<td>< 1mm</td>
<td>39</td>
<td>19mm</td>
<td>67%</td>
<td>74%</td>
<td>33.3%</td>
</tr>
</tbody>
</table>
Factors Predicting Local Recurrence after WLE alone

Close / incomplete margins

High grade / Comedo necrosis

Young age

(Size)
Univariate analysis for ipsilateral recurrence

<table>
<thead>
<tr>
<th>Grading System</th>
<th>n</th>
<th>N of events</th>
<th>H.R.</th>
<th>95 % C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Grade</td>
<td>86</td>
<td>6 (7.0%)</td>
<td>0.51</td>
<td>0.22 - 1.15</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>13 (5.8%)</td>
<td>0.41</td>
<td>0.23 - 0.72</td>
</tr>
<tr>
<td></td>
<td>913</td>
<td>135 (14.8%)</td>
<td>1.00*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Nuys Grade</td>
<td>99</td>
<td>5</td>
<td>0.39</td>
<td>0.16 - 0.94</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>14</td>
<td>0.45</td>
<td>0.26 - 0.78</td>
</tr>
<tr>
<td></td>
<td>913</td>
<td>135</td>
<td>1.00*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiation</td>
<td>90</td>
<td>6</td>
<td>0.38</td>
<td>0.22 - 0.66</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>14</td>
<td>0.47</td>
<td>0.21 - 1.07</td>
</tr>
<tr>
<td></td>
<td>886</td>
<td>134</td>
<td>1.00*</td>
<td></td>
</tr>
</tbody>
</table>
Classification of DCIS

- Low Nuclear Grade
- Intermediate Grade
- High Nuclear Grade
- Mixed Type
- Other (Rare) Variants

- RCPath, NHS BSP and EU Pathology Reporting Guidelines 2005
DCIS

Allelic imbalance analysis suggests that low grade & high grade carcinomas follow different genetic pathways

Common Precursor

E Cadherin → Lobular Carcinoma

LOH 16q → Low Grade Carcinoma

C-erbB-2 & p53 → High Grade Carcinoma

Other candidates: BRCA 1 17q, BRCA 2 13q, 1q 3p 11q 13q 17q

Medullary, Tub & Lob, Tubular
?Common Precursor

E Cadherin

16q

LOH 16q

C-erbB-2 & p53

17q

Lobular Carcinoma

Low Grade Carcinoma

High Grade Carcinoma
Class 1

?Common Precursor → E Cadherin

16q → LOH 16q

LOH 16q → Low Grade Carcinoma

E Cadherin → Lobular Carcinoma

Class 2

C-erbB-2 & p53

17q

C-erbB-2 & p53 → High Grade Carcinoma
Expression Arrays

Classification of breast cancer

Distinct subgroups identified

- Basal epithelial
- Luminal epithelial
 - ER positive A & B
 - HER amplified

Prognostic differences

Perou et al., 2000; Sorlie et al., 2001; van 't Veer, 2002
Markers in DCIS

Gene expression patterns in DCIS & invasive & metastatic tumors with serial analysis of gene expression (SAGE) (8 DCIS cases grouped)
16,430 transcripts analyzed
mRNA ISH to examine gene expression (18 tumours) & IHC on TMAs (769 cases)
No universal "in situ" or "invasive" signature

Porter D. Mol Cancer Res. 2003;1:362-75
Translation of cDNA studies

- Distinct sub classes of breast cancer can be identified by expression of proteins of known relevance in breast cancer

- These sub classes are comparable to those identified by cDNA expression array technology

- Molecular classification of breast cancer based on protein expression potentially offers further refinement of traditional methods of classification

- A modern clinically relevant breast cancer classification based on molecular genetic, phenotypic and morphological characteristics appears realistic

Luminal Type A lesions

- Luminal ck
- ER rich
- HER2 neg
- 16q del
• Women (No = 13,388) at increased risk for breast cancer as they
 a) were 60 years or older
 b) were 35-59 with a 5-year predicted risk of at least 1.66%
 c) had a history of LCIS
• Received placebo or 20 mg/day tamoxifen for 5 years
• Tamoxifen reduced the risk of invasive breast cancer by 49%
• Decreased risk occurred in women aged 49 years or younger (44%), 50-59 years (51%) and 60 years or older (55%)
• Risk reduced in women with a history of LCIS (56%) or atypical hyperplasia (86%)
• Tamoxifen reduced the occurrence of ER-positive tumours by 69%, no difference in the occurrence of ER-negative tumours

Fisher B et al. J NCI. 1998; 90; 1371-1388
Future classifications systems

• Reflect underlying molecular genetics

• Based on objective morphological and/or protein expression criteria

• Take account of disease extent

• Take account of risk