Statistical Methods for Evaluating Mammography Interpretive Performance

Diana L. Miglioretti, PhD
Sebastien JPA Haneuse, PhD

Group Health Center for Health Studies & University of Washington, Seattle, WA, USA
Background and Motivation

- Extensive variability in mammography interpretation exists among radiologists in the United States.
- Interest in understanding reasons for this variability
 - Patient factors
 - Age, breast density, time since last mammogram
 - Practice and facility characteristics
 - Double reading, CAD
 - Radiologist characteristics
 - Years of experience
 - Training
 - Specialty
 - Interpretive volume (current requirement 960 mammograms over 2 years)
Background and Motivation

- Conflicting study findings on whether and how interpretive volume influences performance
- Priorities from Institute of Medicine report on Improving Breast Imaging Quality Standards:
 - “Determine the effects of reader volume on interpretive accuracy, controlling for other factors that improve interpretive performance.”
 - “More study is needed to establish the implications, advantages, and disadvantages of statistical approaches to evaluating the influence of volume on interpretive performance.”
Physician characteristics associated with clinical screening performance

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Association</th>
<th>Reference</th>
</tr>
</thead>
</table>
| **Years of Experience** | ↓ FP, no Δ TP
↓ FP, ↓ TP
↓ FP
↓ FP | Smith-Bindman, 2005
Barlow, 2004
Elmore, 2002
Tan, 2006 |
| **Volume** | ↓ FP (middle vol), no Δ TP
↑ FP, ↑ TP
↑ PPV >4,000
↓ FP, no Δ CDR
↓ FP, ↑ or no Δ TP
no Δ CDR or Recall, ↑ PPV
↑ CDR | Smith-Bindman (US), 2005
Barlow (US), 2004
Miglioretti (US), 2007
Théberge (Quebec), 2005
Kan (BC), 2000
Coldman (Canada), 2006
Rickard (South Wales), 2006 |
| **Screening Focus** | ↑ FP, ↑ TP
no Δ FP or TP | Smith-Bindman, 2005
Barlow, 2004 |
| **Specialists** | ↓ Recall, ↑ CDR
no Δ Recall or CDR | Sickles, 2002 (N=10)
Leung, 2007 (N=9) |
Statistical issues that could account for conflicting study findings

- Model assumptions
 - *E.g.*, variability among radiologists does not depend on volume
 - Expect more experienced radiologists to perform more similarly than less experienced radiologists

- Differences in regression frameworks used
 - Conditional/cluster-specific
 - Marginal/population-averaged
False-Positive Rate by Years of Experience and Fellowship Training

*Restricted to rates based on at least 100 mammograms. Red line indicates fellowship training.
Importance of Accounting for Clustering within Radiologists

- Mammography performance data are *clustered*
 - Radiologists have different skill levels and thresholds
 - Interpretations made by the same radiologist are correlated

- For valid inference, it is necessary to adjust for correlation among interpretations made by the same radiologist.
 - Naïve methods (chi-square, logistic regression) provide biased standard errors

- Example:
 - 50,000 mammograms interpreted by 10 radiologists (5 experienced, 5 non-experienced)
 - Tempting to think of as 50,000 independent observations
 - Reality is that sample size is closer to “10” independent observations
Common Regression Methods for Clustered Binary Data

- **Conditional (cluster-specific) Models**
 - \[
 \text{logit}(P(\text{recall} \mid x_{ij}, z_i)) = x_{ij} \beta^c + z_i
 \]
 - \(z_i\) = radiologist-specific effect to account for correlation
 - Random effects model: \(z_i \sim \text{Normal}(0, \sigma^2)\)
 - Conditional logistic regression: \(z_i\) fixed effect

- **Marginal (population-averaged) Models**
 - \[
 \text{logit}(P(\text{recall} \mid x_{ij})) = x_{ij} \beta^M
 \]
 - Generalized Estimating Equations (GEE)
 - Robust standard errors take into account correlation
 - Likelihood-based approaches
 - Fully parameterized model for association

- \(\beta^c\) = average effect for an individual radiologist
- \(\beta^M\) = population-averaged effect
Radiologist-Specific vs. Population-Averaged Effects

- Example: Model for effect of high vs. low interpretive volume on sensitivity

- Radiologist-specific odds ratio
 - Change in odds of a *true positive* assessment if a radiologist was high-volume compared to low-volume

- Population-averaged odds ratio
 - Sensitivity of mammography interpreted by the population of high-volume compared to low-volume radiologists

- Answer different scientific questions but both have meaning (and both may be of interest!)
 - Volume: increase volume vs. stop practicing
Relationship between Conditional and Marginal Models

- **Constant random effect variance:**
 - Marginal OR is attenuated towards 1.0 relative to conditional OR
 - If conditional model is correctly specified, marginal model will have correct type I error rate

- **If random effect variance depends on X:**
 - Relative to conditional OR, marginal OR may be attenuated, amplified, or even in opposite direction!
$OR^C = 2.0$

$OR^M = 1.5$
$\text{OR}^M = 0.71, \text{ OR}^C = 0.67, \sigma_0 = 1, \sigma_1 = 1, z_i = -1.5\sigma \text{ to } 1.5\sigma \text{ by } .25$

$\text{OR}^M = 0.71, \text{ OR}^C = 1.7, \sigma_0 = 0.5, \sigma_1 = 2, Z_i = -1.5\sigma \text{ to } 1.5\sigma \text{ by } .25$
Marginal Odds Ratio

Conditional Odds Ratio

SD(X=0)=3, SD(X=1)=3

SD(X=0)=2, SD(X=1)=2

SD(X=0)=1, SD(X=1)=1

SD(X=0)=0.5, SD(X=1)=0.5

\(\beta_0 \)

-3 -2 -1

0

1 2 3
Marginal Odds Ratio

Conditional Odds Ratio

SD(X=0)=2, SD(X=1)=1

SD(X=0)=.5, SD(X=1)=1

SD(X=0)=.5, SD(X=1)=2

SD(X=0)=2, SD(X=1)=1
Summary and Conclusions

- Marginal and conditional models may give different results, because they are modeling different probabilities
 - Marginal effects attenuated if random effect variance constant
 - Marginal effects may be amplified, attenuated, or even in the opposite direction if the random effect variation depends on the covariate of interest
- If interest is in conditional inference
 - Important to take into account differences in RE variation
 - Assuming constant variance can lead to bias
 - Easy to do using standard software
- If interest is in marginal effects
 - May be important to understand mechanism for generating those effects
- Often important to understand reasons for differences in marginal and conditional results